If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-116x+96=0
a = 16; b = -116; c = +96;
Δ = b2-4ac
Δ = -1162-4·16·96
Δ = 7312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7312}=\sqrt{16*457}=\sqrt{16}*\sqrt{457}=4\sqrt{457}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-116)-4\sqrt{457}}{2*16}=\frac{116-4\sqrt{457}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-116)+4\sqrt{457}}{2*16}=\frac{116+4\sqrt{457}}{32} $
| t÷4=32 | | 6j-4=j | | -5m+2-3(m-1)=6m-(7m-6)-9m+3 | | 756=p254 | | 7-3(5-2-10)=x | | 6x+x+14=0 | | 4x^2-15x=19=5x+10 | | 756=p-524 | | 7/3x+2x=117 | | 15=w/4+9 | | 1/4(240)+1/2(240)+x=240 | | -5p-3(5-4p)=5(p-2)-1 | | -2(y-3)7y=30 | | 7(6-1y)=-3(1y-2) | | (2+x)7=9x | | 8/p=9/7 | | x^2+2x-13=9x+5 | | 7-6y=49 | | 9x+23=11x-3 | | 2/3t=12/25 | | 2(2x+1)=3(x-2) | | x^2+x-3=6x+3 | | 0.5(x+2)=35 | | 4x+6x-2=38 | | 9x-1(2x-1)=15 | | 10y-8y-2=20 | | 2x-4x-14=6 | | 71.5=5.5x | | 3s^2+s+1=0 | | 4a+a+3=18 | | 5x+45x-9=10(5x+10) | | -20q-(-14q)-(-5)=-1 |